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Abstract

The origin of the Dicke cooperative states, ad hoc assumed for superradiance in the

system of molecules where no mutual interactions exist but all encountering the same field

of radiation, was studied by considering two harmonic oscillators driven by a common field

of radiation. A phasing operator as _N = D(a)+PND(a), where D(a) is the displacing
operator and PN the projection operator for constant energy N for two oscillators, was

derived. The eigen states of the phasing operator _N are found to show a finite correlation

as for the Dicke cooperative states.

1 Introduction

The important notion put forward by Dicke [1], that molecules can not be treated as independent

when the molecules are interacting each with a common field of radiation, introduced the well

known phenomena of superradiance with the ad hoc assumption of cooperative states. This ad

hoc assumption of the Dicke's cooperative states may be a natural consequence of the fact that a

forced quantum oscillator can be described in terms of the Glauber's coherent states [2]. However,

it may be more enlightening to examine in rigorous quantum mechanics how two independent

molecules (harmonic oscillators) are getting correlated simply by having separate interactions
with a common field of radiation.

Furthermore, it may be more interesting if we restrict the interaction between the radiation

and the molecular system to be "elastic", that is, no net transfer of energy between the molecular

system and the radiation field.

Naively this restriction may correspond to an elastic light scattering from the two molecule

system and a possibility of phasing or correlation of the two molecules by this continuous scattering

of light ( more correctly a driving field of radiation in the elastic channel of interaction).
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2 Two Driven Oscillators

We consider two harmonic oscillators driven by a classical field :

H = hw(a+al + a+a2) - xo(a + + al + a + + a2)E(t) (1)

where we do not have a direct coupling between the two oscillators. This system seems to be con-

sidered as trivial because a single harmonic oscillator driven by a classical field is fully understood

[3].
Since we will be extending the solutions of the single harmonic oscillator driven by a classical

field to the two oscillator problem of Eq.(1), we want to recollect here some important results of

a driven harmonic oscillator [3] :

D(a)]0) = exp(v_a + - _*a)]0) = ]a) (2)

D(a)ln) = ((a+-a*)=/v_n!)l _) (3)

where D(a) is the displacement operator, Is) coherent state of Glauber,

Fc_ = (ixo/li) E(t)expi_otdt, exp(c_a + - a'a) = exp(-Icd2/2)exp(c_a+)exp(-c_*a).

We address now to the two oscillator problem of Eq.(1).

Suppose the two oscillators are prepared in a state IN) of total energy N = nl+n2, then we

let IN) be driven by a classical field D(a) but we restrict the driven system D(_)IN ) to remain

at the same energy of IN).
The quantum mechanical matrix element corresponding to this process may be written as

(NI D+ (a)Pg D(a)IN) (4)

where PN represents the projection operator for states of total energy N :

N

PN = _ IN - n)ln)( l(N - nl (5)
n----O

Alternatively we may define a new operator :

(_N _- D+(a)PND(a) (6)

and Eq.(4) can be written as

(NI'I'NIN)

This implies some particular IN) states can become eigen states of the operator (I)N.

(7)
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3 Evaluation of (NiCbNiN)

For two harmonic oscillator states of total energy N we can write

N

]N) = Z _iN- n)]n)
n=O

From eq.(3) and eq.(8) we obtain

(8)

N

D(c_)]N) = Z c,, ((a + -a;)N-"(a + --a_)n/v/(N- n)!_n!)]a)(x)ia)(2) (9)
!n,_0

where the suffix (1) and (2) refer to the oscillator index. Equation (5) can be rewritten as

N

PN = Z ((a+)N-n(a+)'_/_/(N-n)!_n!)lO)<_,lO),,,<Ol<,,<Ol,_, (a'_a_-n/V_n!x/( N- n)!) (10)
rl=0

From eqs.(6), (9) and (10) we obtain

N N

(NI_NIN) = Z [ Z c_ (0[(2)(0[(1){a_(a+ - a2)*"_alN-'''ta i+ _ c,_)N-m
n----0 m=0

/ v/-_i'n-Iv/'_-im-ix/(N - n)! .v/(N - m)!}. I'_) o)I,_)o)I_ (11)

Making use of al_,)= _1,_)and a"(a+ - ,_')" = (a+ - ,_')'." + m!(a + - a*)"-"l(m - n)!

we can obtain

(NIONIN)

N N

)-_'_I_ _ (01(,)(01(,){V"A-Tm"(a+-o,;,)"-"/v"-_U.'(m-,-,)!
n=O m=O

+(a + - _;)_7/v_.w_d.q{ %/(N - m)! (a + - a_)"-'_l'v/(N - n)!(n - m)!

+(at -_;)N-,.,_f-./X,/( g - m)!v/( y - nl!}l°')(1)la)(2)l _ (12/

Since we are dealing with two identical molecules and the same common field of radiation we may

set al = a2 = a and make use of the following [3],

alO)= 0, (o1_)= exp(-lal 2/2) (13)

(14)

to obtain

(NI_bNIN)

N N N

__, _ __, c..,c7(exp(-21<_12)ln!(N - n)!} {x/_m.lx/(N - m)! 5._.
n=O m=O l=O

+ (-1) N-" _ IM2(N-")/(m - n)!.v/(N - m)!

+ (-1)nx/(N - m)! lal2"/(n - m)!V/-m-_m!

+ (--1)NIo,I'NIvF'_.m'.v/(N--m)!}{x/(N-/)!V_. ,5,.
+ (-1)N-"V"_.'I,_l_(N-")/q- ,',)!_/(N - l)!
+ (-1)"v/(N - t)! I,_1_"./(,",- l)!vqi.'
+ (--1)NIo<I2NIv_.q(N-/)!}
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Since [N) of eq.(8) can be represented by a (N+l)-dimensional state vector, CN can be defined

as a (N+I)x(N+I) matrix operator to give

N N

(NI*,,INI= Z F_,
m=0 I=0

where we find, from eq.(14), the (1,m) matrix element of the operator _lv as follows:

N

,_" = E(exp-2]al2/n!(N - n)!){v/'_m.W,v/(N - m)! &,,,_
rL=0

+ (-1)(N-")V_m.) lala(N-")/(m - n)!x/(N - m)!

+ (- 1)".v/(N _ m)! M'"t(r, - m)!vf-_m_

+ (--1)NI,_I'N/V-_m'.¢(N-- _)! }{ x/(N - O!V_.,_,.
+ (-1)N-"V'fif I,_l'(U-")/(1- .)!V(N - t)!
+ (-1)"¢(N - Z)!I':'l'"/(r' - t)!VI_.'
+ (-1)NI,_I'Ulv_.v/(N -l)! }

(15)

(16)

We can check for the correct limiting values:

lim @_v"(a) = 6l.,
or---cO

lim (NICNIN)
a--t0

n=O m=O

N

= _1_12= 1
n=0

4 CN As Phasing Operator

In order to probe into the physical meaning of the operator ON we illustrate for the simplest

nontrivial case of N = nl Jr rt2 = 1.

The _N operator is then given in the form

°o)@N=,= ¢1 ° ¢]' (17)

and the matrix elements are obtained from eq.(16) as follows:

_ = _1 = exp(_2lal2)(4_ 8]ctl2 + 81a14)

¢oa = ¢]o = exp(_2[al2)(_81al 2 + 81_14)
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Diagonalizing the matrix of eq.(17) gives the eigen values A, and A2 as

A, = _00 +(i)ol,

,_2 = _oo_ @o, (18)

The corresponding eigen states IA,) and [A2) are obtained as follows:

1

lax) - ,_._(lO)(,)ll)(u) -4-I1)o)lO)(u)),

1

IAu) - _7_(10)(,)ll)(z)-11)(,)10)(2)) (19)

Correlation or phasing of two oscillators can be measured by a value of < xl • x2 > where xl and

x_ are the two harmonic oscillator coordinates of displacement [4].

We can see easily

(01(u)(ll(1)x,. x_11)(,)10)(2): (01(,)<ll(u)x,. xull)(u)10)(,) = 0

for the case of a = 0, but for our eigen states of (I)N we obtain

1 2
= _Zo {(01(z)(ll(,)a+a210)(a)ll)(2)+ (ll(_)(01(,)axa2+11)(1)10)(2)}

We can thus see that the two noninteracting molecules in the common driving field of radiation

find themselves as correlated. The correlated eigen states of the concerning Hamiltonian of eq.(1)

can be found as the eigen states of the phasing operator (I)N as introduced in eq.(6).

The existence of the correlated eigen states of the two oscillator Hamiltonian thus justifies

the ad hoc assumption of the Dicke cooperative states for independent molecules all in the same

common field of radiation.
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